Preparation of Camphor From Camphene


Camphene, C10H16, is produced from alpha-pinene, and is a two-ringed monoterpene hydrocarbon. Terpenes are closely associated with conifers. In fact, the word "terpene" comes from "turpentine".

Camphor, C10H16O, a pleasant, medicinal-smelling terpenoid, once frequently found in the home, possesses antimicrobial and anesthetic properties. It is also used in cough-suppressants.

Camphor is made from camphene via intermolecular rearrangement, acetate capture, hydrolysis and then oxidation.

Reaction Sequence

  • Camphene undergoes Wagner-Meerwein rearrangement, forming isoborneol by bond relocation. The diagram shows the three neutral species involved in the rearrangement.

    Many reactions are reversible. By "capturing" one configuration, the reversibility is eliminated, and the desired product is produced in high yield. This is the purpose of the acetate in the synthesis of camphor--to drive the reaction in the desired direction--to the formation of isoborneol acetate. Sometimes this reaction is carried out in the presence of a catalyst, such as a tungsten-containing polyacid.

    The isoborneol acetate may then be saponified to isoborneol by treatment with alcoholic potassium hydroxide. After cooling, the product is treated with water, causing the solid isoborneol, which is not water soluble, to precipitate. Collecting it by filtration and drying it, the isoborneol can then be oxidized using the mild oxidizing agent, sodium hypochlorite bleach (in the presence of acetic acid). Alternatively, the oxidizing mixture of chromic acid and sulfuric acid can be used, however, this generates troublesome chromium waste products.

Wagner-Meerwein Rearrangement and Carbocation Rearrangements

  • The carbocation (formerly called carbonium ion) was first observed in 1901. However, this rearrangement discovered by German chemist Hans Meerwein (1879-1965) was the first reaction proclaimed to have involved a carbocation intermediate.


  • Some of the materials used in this synthetic procedure are potentially dangerous. Acetic acid, for instance, is capable of producing serious burns without inflicting much, if any, initial pain. In addition, the fumes are harmful to mucous membranes and the eyes. Alcoholic potassium hydroxide is strongly caustic. Even camphor and the other substances used as the major reactants are toxic and may cause problems if the proper safety equipment, including laboratory hoods, is not used.

Related Searches


Promoted By Zergnet



You May Also Like

  • Facts on the Camphor Tree

    Rounded foliage with broad, dark green leaves and small round berries sprouting from a strong central trunk are common characteristics of the...

  • What is a Coal Oil Lamp?

    Coal oil lamps became popular in Europe during the 1600s as fuel for the light in a lighthouse. Candles or fires were...

  • What Is Camphor Glass?

    Antique collectors often focus their collections upon a particular item, such as candlesticks or vases, or prefer to purchase items made from...

  • Where Does Camphor Come From?

    Camphor is an aromatic, crystalline substance related to turpentine. Most commercial camphor is obtained from the camphor tree. Also known as the...

  • How to Convert an Alkane to an Alkene

    An alkene is an acyclic (does not form a ring) compound that has at least one carbon-to-carbon double bond. Cyclic compounds with...

  • Instructions for Vicks VapoSteam

    Vicks VapoSteam is a camphor product that temporarily relieves coughing associated with a bronchial inflammation, common cold or flu. Vicks VapoSteam also...

  • Reduction of Camphor to Isoborneol

    Note: Please format the numbers in the formulas to appear as subscripts. Camphor [(CH3)3(CH2)3(CH)(C)2C0] is a waxy, white solid with a strong...

  • Organic Chemistry Synthesis Problems

    Synthesis problems in organic chemistry may seem a bit overwhelming, but they can be made easier with a three-step process that works...

Related Searches

Check It Out

How to Build and Grow a Salad Garden On Your Balcony

Is DIY in your DNA? Become part of our maker community.
Submit Your Work!