What Are Magnet Keepers?


A permanent magnet is a piece of iron or a similar metal having its own magnetic field. Under ideal conditions, it will retain its magnetic strength for many years. Frequent drops, impacts or high temperatures weaken it. A piece of iron, called a keeper, fits over the magnet's poles, helping it retain its magnetism during long periods in storage.


  • All permanent magnets exhibit what scientists call ferromagnetism, when a magnetic field produces a strong attractive force in the metal. Under the right conditions, a ferromagnetic metal piece acquires its own field, becoming magnetized. Other kinds of metals, such as copper and aluminum, are paramagnetic, having a weak attraction to magnets and never having a permanent field. A magnet keeper is a piece of ferromagnetic material, which is not itself magnetized.

Storing Magnets

  • In all ferromagnetic materials, microscopic bits of metal, called domains, have tiny magnetic fields. If their magnetic north and south poles line up, they cooperate and form a large field around the whole object. Impacts and heat scramble the orientation of the domains, weakening the field. Long periods of time also weaken magnets. During storage, a keeper reinforces the magnetic field, maintaining its strength for longer periods of time.

Magnet Shapes

  • Permanent magnets come in a variety of shapes: bars, horseshoes, rings and flat strips. Regardless of shape, every magnet has exactly one north and one south pole, located magnetically at opposite ends of the field. Lines of magnetic force exit the magnet at the north pole, curve around and re-enter it at the south pole, and pass through the magnet's material to the north pole, forming a continuous loop. A horseshoe magnet has its north and south poles near each other, one pole at each end of the "U" shape. It makes an ideal candidate for a keeper, as it lays across both poles, forming a magnetic bridge between them.

Magnetic Circuit

  • A magnetic field holds its strength best when the entire magnetic loop, or circuit, passes through a ferromagnetic metal at all points. A horseshoe magnet has an air gap between its two poles; the keeper closes this gap. A bar magnet, left by itself, will lose its strength over several months. Though a bar magnet has no "keeper," if you lay two bars side by side, with the north pole of one touching the south pole of the other, they form a magnetic loop in iron and preserve the strength of both magnets.

Related Searches


  • Photo Credit Stockbyte/Stockbyte/Getty Images
Promoted By Zergnet


You May Also Like

  • What Makes a Material Magnetic?

    Not just any material can be magnetic. In fact, of all the known elements, only a handful possess magnetic capability and they...

  • How to Calculate Magnetization

    Magnetization is a measure of the density of magnetism and may be calculated from the number of magnetic moments in a given...

  • How to Store Magnets

    Storage solutions depend on the nature of the articles being stored. Magnets have special characteristics, requiring careful storage. Be aware also that...

  • How to Calculate the Force of an Electromagnet

    Electrical engineers create electromagnets by passing electrical currents through metal objects of certain shapes. They commonly use solenoidal pieces of wire as...

  • Regulations for Shipping Magnets by Airplane

    Magnets with a magnetic field strength of 0.159 amperes per meter or greater, and those that are measurably effective at a distance...

  • How Do Magnets Attract & Repel?

    Magnets can attract and repel by creating fields in which there will always be movement to reduce the field. Discover how repelling...

Related Searches

Check It Out

How to Build and Grow a Salad Garden On Your Balcony

Is DIY in your DNA? Become part of our maker community.
Submit Your Work!