How to Calculate the Duty Cycle of a Frequency

Save

The duty cycle of a signal measures the fraction of time a given transmitter is transmitting that signal. This fraction of time determines the overall power delivered by the signal. Signals with longer duty cycles carry more power. This makes the signal stronger, more reliable and easily detected by receiving equipment. Signals with longer duty cycles require less efficient receivers than do signals with shorter duty cycles.

Things You'll Need

• Oscilloscope
• Measure the pulse width of the transmitted signal. If you do not know it, connect the output of the signal to the input of an oscilloscope. The oscilloscope screen will show a series of pulses oscillating at the frequency of the signal. Note the width, in seconds or microseconds, of each pulse. This is the pulse width, or PW, of the signal.

• Calculate the period, or "T", of the frequency, or "f," using the formula: T = 1/f. For example, if the frequency is 20 hz, then T = 1/20, with a result of 0.05 seconds.

• Determine the duty cycle, represented by "D," through the formula D = PW/T. As an example, if PW is 0.02 seconds and T is 0.05 seconds, then D = 0.02/0.05 = 0.4, or 40%.

References

• Photo Credit Jupiterimages/Photos.com/Getty Images
Promoted By Zergnet

Related Searches

Check It Out

3 Day-to-Night Outfits for the Work Week

M
Is DIY in your DNA? Become part of our maker community.