How to Find the Y-Intercept of a Circle


The word "intercept" means crossing point, and the y-intercept of a graph refers to the point at which the equation crosses the y-axis of the coordinate plane. When a point is on the y-axis, it is neither to the left nor the right of the origin. Therefore, it is located at the spot in the equation where x equals zero. Because a circle is round, it can cross the y-axis twice and have up to two y-intercepts. However, you find the y-intercept(s) of a circle the same way you would for any other equation - by substituting "0" for x.

  • Substitute "0" in for x in the standard form of the equation of a circle -- (x-h)^2 + (y-k)^2 = r^2, where h and k are integers and r stands for the radius of the circle. For example, (x-3)^2 + (y+4)^2 = 25 becomes (0-3)^2 + (y+4)^2 = 25 when plugging "0" in for x.

  • Square the part of the equation that used to have the x, the h value. Then, subtract that from both sides. Here, you will get 9 + (y+4)^2 = 25, then (y+4)^2 = 16.

  • Take the positive and negative square root of both sides to create two linear equations. For instance, in the example above, you will have y + 4 = 4 and y + 4 = -4.

  • Solve each equation for y to get your y-intercepts. In this case, you subtract 4 from both sides in both equations to end up with (0, -8) and (0, 0).


  • Photo Credit Jupiterimages/Comstock/Getty Images
Promoted By Zergnet


You May Also Like

Related Searches

Check It Out

Can You Take Advantage Of Student Loan Forgiveness?

Is DIY in your DNA? Become part of our maker community.
Submit Your Work!