How to Find the Y-Intercept of a Circle

Save

The word "intercept" means crossing point, and the y-intercept of a graph refers to the point at which the equation crosses the y-axis of the coordinate plane. When a point is on the y-axis, it is neither to the left nor the right of the origin. Therefore, it is located at the spot in the equation where x equals zero. Because a circle is round, it can cross the y-axis twice and have up to two y-intercepts. However, you find the y-intercept(s) of a circle the same way you would for any other equation - by substituting "0" for x.

  • Substitute "0" in for x in the standard form of the equation of a circle -- (x-h)^2 + (y-k)^2 = r^2, where h and k are integers and r stands for the radius of the circle. For example, (x-3)^2 + (y+4)^2 = 25 becomes (0-3)^2 + (y+4)^2 = 25 when plugging "0" in for x.

  • Square the part of the equation that used to have the x, the h value. Then, subtract that from both sides. Here, you will get 9 + (y+4)^2 = 25, then (y+4)^2 = 16.

  • Take the positive and negative square root of both sides to create two linear equations. For instance, in the example above, you will have y + 4 = 4 and y + 4 = -4.

  • Solve each equation for y to get your y-intercepts. In this case, you subtract 4 from both sides in both equations to end up with (0, -8) and (0, 0).

References

  • Photo Credit Jupiterimages/Comstock/Getty Images
Promoted By Zergnet

Comments

You May Also Like

Related Searches

Check It Out

Can You Take Advantage Of Student Loan Forgiveness?

M
Is DIY in your DNA? Become part of our maker community.
Submit Your Work!