The midpoint of two coordinates is the point that’s exactly halfway between the two points, or the average of the two points. Instead of trying to visually determine the halfway point of a steep line drawn on a coordinate plane, you can use the midpoint formula. The midpoint formula  [(x1 + x2)/2, (y1 + y2)/2]  determines the coordinates of the midpoint between any two endpoints (x1, y1) and (x2, y2). The first part of the formula calculates the average xcoordinate of the endpoints, and the second part calculates the average ycoordinate of the endpoints.

Input any two coordinates into the midpoint formula. For this example, use the coordinates (5, 6) and (1, 2). This yields the following: [(5 +1)/2, (6 + 2)/2].

Add 5 and 1, which equals 6.

Divide 6 by 2, which equals 3. This is the average xcoordinate of the endpoints.

Add 6 and 2, which equals 8.

Divide 8 by 2, which equals 4. This is the average ycoordinate of the endpoints.

Write the x and ycoordinates as an ordered pair, which equals (3, 4). This is the midpoint of (5, 6) and (1, 2).
Tips & Warnings
 To use an easier method to find the midpoint of a horizontal or vertical line drawn between two points on a plane, count the number of units on the respective x or yaxis between the two points and divide by 2.
References
 Photo Credit Ryan McVay/Photodisc/Getty Images